当前位置: X-MOL 学术Int. J. Thermophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Investigation on Pool Boiling Heat Transfer Performance of Superhydrophilic, Hydrophilic and Hydrophobic Surface
International Journal of Thermophysics ( IF 2.2 ) Pub Date : 2024-03-06 , DOI: 10.1007/s10765-024-03350-2
Sudhir Kumar Singh , Deepak Sharma

The recent advances in the growth of heat dissipation from microelectronic devices have led to the two-phase heat transfer method via nucleate boiling for better thermal management. In this study, the effect of surface wettability on the saturated pool boiling heat transfer performance is examined with deionized water. Three types of wettability surfaces are compared, i.e., superhydrophilic (SHPi), hydrophilic (HPi) and hydrophobic (HPo) surfaces. The SHPi surface is prepared by anodic oxidation of the copper surface, while the HPi and HPo surface is prepared by coating Cu–TiO2 and Cu–MWCNTs, respectively, on the copper surface using the electrochemical deposition method. The earliest incipience of nucleate boiling was observed with the HPo surface, while a most delayed onset of nucleation was obtained for the SHPi surface. The critical heat flux is found to be 1012 kW·m−2, 1251 kW·m−2, 1490 kW·m−2 and 1610 kW·m−2 corresponding to the plane copper, HPo, HPi and SHPi surfaces following the ascending order. The improved rewetting of the arid area underneath the formed vapour bubble caused a delay in the dry-out occurrence and resulted in a maximum critical heat flux for the SHPi surface. The maximum heat transfer coefficient of 88.42 kW·m−2·K−1, 64.7 kW·m−2·K−1 and 59.19 kW·m−2·K−1 have been observed for the HPi, HPo and SHPi surfaces, respectively, which translates to an increment of 60.2 %, 17.23 % and 7.25 %, respectively, as compared to plain surface. The SHPi surface induces the rightward shifting of the boiling curve as compared to the plane surface, which gives a lower heat transfer coefficient for a particular heat flux.



中文翻译:

超亲水、亲水、疏水表面池沸腾传热性能实验研究

微电子器件散热技术的最新进展催生了通过泡核沸腾的两相传热方法,以实现更好的热管理。在这项研究中,用去离子水检验了表面润湿性对饱和池沸腾传热性能的影响。比较了三种类型的润湿性表面,即超亲水(SHPi)、亲水(HPi)和疏水(HPo)表面。SHPi表面是通过对铜表面进行阳极氧化制备的,而HPi和HPo表面是通过使用电化学沉积方法分别在铜表面涂覆Cu-TiO 2和Cu-MWCNT来制备的。HPo 表面最早开始出现核沸腾,而 SHPi 表面则出现最延迟的成核。发现临界热通量为1012 kW·m -2、1251 kW·m -2、1490 kW·m -2和1610 kW·m -2,对应于上升的平面铜、HPo、HPi和SHPi表面。命令。形成的蒸汽泡下方干旱区域的再润湿性得到改善,导致干燥发生延迟,并导致 SHPi 表面出现最大临界热通量。HPi、HPo 和 SHPi 表面的最大传热系数为 88.42 kW·m -2 ·K -1、64.7 kW·m -2 ·K -1和 59.19 kW·m -2 ·K -1 ,与普通表面相比,分别增加了 60.2%、17.23% 和 7.25%。与平面相比,SHPi 表面导致沸腾曲线向右移动,这对于特定的热通量给出了较低的传热系数。

更新日期:2024-03-06
down
wechat
bug