当前位置: X-MOL 学术Planet. Sci. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-dimensional Microphysics Model of Venusian Clouds from 40 to 100 km: Impact of the Middle-atmosphere Eddy Transport and SOIR Temperature Profile on the Cloud Structure
The Planetary Science Journal Pub Date : 2024-03-01 , DOI: 10.3847/psj/ad25f3
Hiroki Karyu , Takeshi Kuroda , Takeshi Imamura , Naoki Terada , Ann Carine Vandaele , Arnaud Mahieux , Sébastien Viscardy

We conducted a simulation of H2SO4 vapor, H2O vapor, and H2SO4–H2O liquid aerosols from 40 to 100 km, using a 1D Venus cloud microphysics model based on the one detailed in Imamura & Hashimoto. The cloud distribution obtained is in good agreement with in situ observations by Pioneer Venus and remote-sensing observations from Venus Express (VEx). Case studies were conducted to investigate sensitivities to atmospheric parameters, including eddy diffusion and temperature profiles. We find that efficient eddy transport is important for determining upper haze population and its microphysical properties. Using the recently updated eddy diffusion coefficient profile by Mahieux et al., our model replicates the observed upper haze distribution. The H2O vapor distribution is highly sensitive to the eddy diffusion coefficient in the 60–70 km region. This indicates that updating the eddy diffusion coefficient is crucial for understanding the H2O vapor transport through the cloud layer. The H2SO4 vapor abundance varies by several orders of magnitude above 85 km, depending on the temperature profile. However, its maximum value aligns well with observational upper limits found by Sandor et al., pointing to potential sources other than H2SO4 aerosols in the upper haze layer that contribute to the SO2 inversion layer. The best-fit eddy diffusion profile is determined to be ∼2 m2 s−1 between 60 and 70 km and ∼360 m2 s−1 above 85 km. Furthermore, the observed increase of H2O vapor concentration above 85 km is reproduced by using the temperature profile from the VEx/SOIR instrument.

中文翻译:

40至100公里金星云一维微物理模型:中层大气涡流传输和SOIR温度剖面对云结构的影响

我们使用基于 Imamura 和 Hashimoto 中详述的模型的一维金星云微物理模型,对 40 至 100 km 范围内的H 2 SO 4蒸气、 H 2 O 蒸气和 H 2 SO 4 –H 2 O 液体气溶胶进行了模拟。获得的云分布与先锋金星的现场观测和金星快车(VEx)的遥感观测非常吻合。进行了案例研究来调查对大气参数的敏感性,包括涡流扩散和温度剖面。我们发现有效的涡流传输对于确定上部雾霾群体及其微物理特性非常重要。使用 Mahieux 等人最近更新的涡流扩散系数剖面,我们的模型复制了观察到的上部雾度分布。 H 2 O蒸气分布对60-70 km区域的涡流扩散系数高度敏感。这表明更新涡流扩散系数对于理解 H 2 O 蒸气通过云层的传输至关重要。 H 2 SO 4蒸气丰度在 85 km 以上变化几个数量级,具体取决于温度分布。然而,其最大值与 Sandor 等人发现的观测上限非常吻合,指出上雾层中 H 2 SO 4气溶胶以外的潜在来源对 SO 2逆温层有贡献。最佳拟合涡流扩散剖面确定为 60 至 70 km 之间约2 m 2 s -1以及 85 km 以上约 360 m 2 s -1。此外,使用 VEx/SOIR 仪器的温度曲线再现了 85 km 以上观察到的 H 2 O 蒸气浓度的增加。
更新日期:2024-03-01
down
wechat
bug