当前位置: X-MOL 学术Front. Marine Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surfaces of coastal biogenic structures: exploiting advanced digital design and fabrication strategies for the manufacturing of oyster reef and mussel bed surrogates
Frontiers in Marine Science ( IF 3.7 ) Pub Date : 2024-04-23 , DOI: 10.3389/fmars.2024.1395025
Jan Hitzegrad , Leon Brohmann , Friedrich Herding , Kai Pfennings , Sven Jonischkies , Elisa Scharnbeck , Jeldrik Mainka , Inka Mai , Christian Windt , Harald Kloft , Achim Wehrmann , Dirk Lowke , Nils Goseberg

Coastal biogenic structures, formed by ecosystem engineering species, often feature rough surfaces characterized by intricate topographies and highly three-dimensional reliefs. Their surfaces are shaped by waves and tidal currents and reciprocally influence the ambient hydrodynamics, reflecting an equilibrium. Despite their significance, the impact of these surfaces on the ambient hydrodynamics remains underexplored due to limited knowledge of accurately replicating their complex topographies in experimental setups. The recent advent of advanced digital manufacturing presents an efficient means to manufacture highly complex, three-dimensional surrogate models for experimental modeling. This work explores the accurate replication of rough coastal biogenic structures for experimental modeling on the examples of an oyster reef and a mussel bed, utilizing a flexible design methodology and, for the first time, particle bed 3D printing with Selective Cement Activation (SCA) as a fabrication and manufacturing method. A workflow is proposed, which includes an iterative surrogate model development based on in-situ topographical features, requirements of the experimental setup, and parameters of the particle bed 3D printer with SCA. The results demonstrate the effectiveness of the methodology in achieving highly accurate surrogate surfaces of complex coastal biogenic structures by validation against a set of topographical features relevant to hydraulic roughness. Particle bed 3D printing with SCA proved to be a suitable method to manufacture complex surrogate surfaces for experimental modeling, offering advantages such as independence of production time from surface complexity. However, challenges persist in achieving exact comparability between the manufactured surrogate surface and the real coastal biogenic structures, particularly for surfaces with very high complexity. Nonetheless, the manufactured generic surrogate surfaces enable detailed investigations into the influence of complex coastal biogenic structures on the ambient hydrodynamics, thereby enhancing the understanding of the processes governing wave energy dissipation attenuation, turbulence production, and vertical mixing – critical for efficient application as a nature-based solution on coastal protection or restoration efforts.

中文翻译:

沿海生物结构的表面:利用先进的数字设计和制造策略来制造牡蛎礁和贻贝床替代品

由生态系统工程物种形成的沿海生物结构通常具有粗糙的表面,其特征是复杂的地形和高度三维的地形。它们的表面由波浪和潮流塑造,并相互影响周围的流体动力学,反映了平衡。尽管它们很重要,但由于在实验装置中准确复制其复杂地形的知识有限,这些表面对环境流体动力学的影响仍未得到充分探索。最近先进数字制造的出现提供了一种有效的方法来制造用于实验建模的高度复杂的三维替代模型。这项工作探索了粗糙沿海生物结构的精确复制,以牡蛎礁和贻贝床为例进行实验建模,利用灵活的设计方法,并首次使用选择性水泥活化 (SCA) 的颗粒床 3D 打印作为一种制造和制造方法。提出了一个工作流程,其中包括基于迭代代理模型开发原位地形特征、实验设置要求以及带有 SCA 的颗粒床 3D 打印机的参数。结果表明,通过对一组与水力粗糙度相关的地形特征进行验证,该方法在实现复杂沿海生物结构的高精度替代表面方面是有效的。事实证明,采用 SCA 的粒子床 3D 打印是制造用于实验建模的复杂替代表面的合适方法,具有生产时间不受表面复杂性影响等优点。然而,在制造的替代表面和真实的沿海生物结构之间实现精确的可比性仍然存在挑战,特别是对于复杂性非常高的表面。尽管如此,制造的通用替代表面能够详细研究复杂的沿海生物结构对环境流体动力学的影响,从而增强对控制波浪能量耗散衰减、湍流产生和垂直混合过程的理解——这对于自然的有效应用至关重要基于海岸保护或恢复工作的解决方案。
更新日期:2024-04-23
down
wechat
bug